
Smart Contract Code

Review And Security

Analysis Report

Customer: MIN token

Date: 24/04/2024

We express our gratitude to the MIN Token team for the collaborative engagement that enabled

the execution of this Smart Contract Security Assessment.

MIN Token project is an ERC20 based vesting project. Given a tokenomics structure with Token

Generation Events (TGE), cliff and vesting periods.

Platform: Polygon

Language: Solidity

Tags: ERC20, Vesting

Timeline: 05/04/2024 -22/04/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/baltarifcan/MINToken/?tab=readme-ov-file

Commit 0ec894f

2

https://hackenio.cc/sc_methodology
https://github.com/baltarifcan/MINToken/?tab=readme-ov-file

Audit Summary

10/10 9/10 100% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 9.8/10

The system users should acknowledge all the risks summed up in the risks section of the report

7 6 0 1

Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 1

High 1

Medium 1

Low 4

Vulnerability Status

F-2024-2068 - Allows Adding a new Beneficiary to a Finished Vesting Schedule Mitigated

F-2024-1476 - TGE can be Withdrawn Multiple Times Fixed

F-2024-2057 - Missing Time Checks During Vesting Period Creation Fixed

F-2024-2058 - Reserved Funds are not being Updated Fixed

F-2024-2059 - Private Sale Allow Users to Deposit or Withdraw During a Vesting Period Fixed

F-2024-2067 - Missing Cap Limit Check While Adding Beneficiaries to the Strategic Sale Fixed

F-2024-2070 - Missing Free Amount Check When Users Are Added to Private Sale Fixed

3

https://portal.hacken.io/App/Projects/Details/9a12caf9-3a2e-4fba-8b52-b5a5512bf82b/Finding/8e19d7bf-3e96-4630-9f67-fc14316d485f
https://portal.hacken.io/App/Projects/Details/9a12caf9-3a2e-4fba-8b52-b5a5512bf82b/Finding/e022d750-6ca8-4a82-9fa9-6135a3cbe3c3
https://portal.hacken.io/App/Projects/Details/9a12caf9-3a2e-4fba-8b52-b5a5512bf82b/Finding/79f1384c-4b38-4b25-932c-ef3434b1d898
https://portal.hacken.io/App/Projects/Details/9a12caf9-3a2e-4fba-8b52-b5a5512bf82b/Finding/07757af9-c479-4c97-8236-ee51e60e0c10
https://portal.hacken.io/App/Projects/Details/9a12caf9-3a2e-4fba-8b52-b5a5512bf82b/Finding/1c3d0fe7-61b9-48e3-8c1a-5b1017a36a99
https://portal.hacken.io/App/Projects/Details/9a12caf9-3a2e-4fba-8b52-b5a5512bf82b/Finding/885e19f3-7f94-4ad4-826e-3c57c834a5e7
https://portal.hacken.io/App/Projects/Details/9a12caf9-3a2e-4fba-8b52-b5a5512bf82b/Finding/0a7ba142-f878-42ec-a426-b7fdad0827e3

This report may contain confidential information about IT systems and the intellectual property

of the Customer, as well as information about potential vulnerabilities and methods of their

exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent

publication of this report shall be without mandatory consent.

Document

Name

Smart Contract Code Review and Security Analysis Report for MIN

token

Audited By Turgay Arda Usman

Approved

By

Grzegorz Trawinski

Changelog 09/04/2024 - Preliminary Report

22/04/2024 - Final Report

4

Table of Contents

System Overview 6

Privileged Roles 6

Executive Summary 7

Documentation Quality 7

Code Quality 7

Test Coverage 7

Security Score 7

Summary 7

Risks 8

Findings 9

Vulnerability Details 9

Observation Details 25

Disclaimers 28

Appendix 1. Severity Definitions 29

Appendix 2. Scope 30

System Overview

MIN Token project is an ERC20 based vesting project. Given a tokenomics structure with Token

Generation Events (TGE), cliff and vesting periods. It has the following contracts:

MINToken — simple ERC-20 token that mints all initial supply to a deployer. Additional minting

is not allowed.

It has the following attributes:

Name: Modern Innovation Network

Symbol: MINX

MINVestingBase —This contract handles the base vesting schedule logic for the MIN token.

MINPrivateSwap —This contract is used for swapping tokens in a private sale.

MINStrategicSale — This contract manages the strategic sale of MIN tokens.

MINVesting — This contract handles the vesting schedule for the MIN token.

MINStructs — A library for managing MIN token related structures.

Privileged roles

Set vesting schedules on MINVesting (Owners).

Release vested amounts of MINX Token to wallets (Owners and buyers).

Buy MINX Token with a set swappable token and rate (Buyers).

Give up buying MIN Token through MINPrivateSwap and claim sent swappable token before

sale ends (Buyers).

Claim any unsold MINX Tokens and sale revenue in swappable token after sale ends

(Owners).

6

Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project.

Detailed scoring criteria can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are provided.

Technical description is provided.

Code quality

The total Code Quality score is 9 out of 10.

The code mostly follows style guides and best practices.

See low and informational issues for more information.

The development environment is configured.

Test coverage

Code coverage of the project is 100% (branch coverage),

Deployment and basic user interactions are covered with tests.

Negative cases coverage is not missed.

Security score

Upon auditing, the code was found to contain 1 critical, 1 high, 1 medium, and 4 low severity

issues, leading to a security score of 0 out of 10. Upon the retest, all significant issues were

fixed, leading to a Security score of 10 out of 10

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 9.8. This

score reflects the combined evaluation of documentation, code quality, test coverage, and

security aspects of the project.

7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/

Risks

The absence of restrictions on state variable modifications by the owner leads to arbitrary

changes, affecting contract integrity and user trust, especially during critical operations

like minting phases.

The implementation allows owner to withdraw MIN tokens and swap tokens any time

without notifying anyone.

8

Findings

Vulnerability Details

F-2024-2059 - Private Sale Allow Users to Deposit or Withdraw

During a Vesting Period - Critical

Description: The MINPrivateSwap.sol contract, used for swapping tokens in a

private sale. The contract allows for depositing and withdrawing

tokens, with checks for sale end times. These operations are allowed

according to the sale time but not the vesting duration or the cliff

period. Meaning, if the sale period time collides with the vesting or

cliff period a user will be able to deposit or withdraw funds to/from to

the private vesting schedule and alter its balance.

function _updateBeneficiaryVestedAmount(address beneficiary, uint256

swapTokenBalance) private {

MINStructs.VestingSchedule memory vestingSchedule = MINStructs.Vesti

ngSchedule({

tgePermille: 0,

beneficiary: beneficiary,

startTimestamp: _privateSaleVestingSchedule.startTimestamp,

cliffDuration: _privateSaleVestingSchedule.cliffDuration,

vestingDuration: _privateSaleVestingSchedule.vestingDuration,

slicePeriodSeconds: _privateSaleVestingSchedule.slicePeriodSeconds,

totalAmount: 0,

releasedAmount: 0

});

if (swapTokenBalance > 0) {

vestingSchedule.totalAmount = ((swapTokenBalance * 100) / _ratioMinT

oSwap);

}

if (vestingSchedule.totalAmount > 0) {

_setVestingSchedule(vestingSchedule);

} else {

_removeVestingSchedule(beneficiary);

}

}

After each of these actions the released amount will be set to zero, as

it can be seen above. In a case where, the sale time is accidentally

set to a time between cliff period and the vesting deadline where

some of the locked funds are already released by the beneficiary and

a deposit or a withdrawal occurs, the released amount will be set to

zero. Thus when the vesting schedule ends the user will be able to

release more tokens than the schedule should.

In an other case a user can deposit to a finished private sale vesting

schedule, set the released funds to zero and then trigger release

function to get double funds.

Assets:

./vesting/MINPrivateSwap.sol

[https://github.com/baltarifcan/MINToken/]

9

https://portal.hacken.io/App/Projects/Details/9a12caf9-3a2e-4fba-8b52-b5a5512bf82b/Finding/1c3d0fe7-61b9-48e3-8c1a-5b1017a36a99

Status: Fixed

Classification

Impact: Likelihood [1-5]: 5

Impact [1-5]: 5

Exploitability [0-2]: 1

Complexity [0-2]: 1

Final Score: 3.5 (High)

Hacken Calculator Version: 0.6

Severity: Critical

Recommendations

Remediation: Make sure the sale period and vesting schedule periods are correctly

aligned or the re-implement the

_updateBeneficiaryVestedAmount() function so that it tracks the

released amount

Remediation (revised commit: 7823a9a): The following check is

implemented to align sale and vesting periods.

require(

block.timestamp + saleDuration <= privateSaleVestingSchedule.startTi

mestamp,

"MINPrivateSwap: sale must end before cliff and vesting starts"

);

Evidences

PoC

Reproduce:

Initial setup

Sale Duration: 1 week (7 days) from cliff period

Vesting Schedule:

Cliff Period: 3 months from today

Vesting Duration: 1 year from today

total amount: 1,000,000 MIN tokens

On day 1 of the sale, Alice releases 300,000 MIN tokens.

total amount: 1,000,000

released amount: 300,000

On day 3 of the sale, Alice deposits 10,000 swap tokens. The

contract calculates that Alice is eligible to receive 1,000,000 MIN

10

tokens (10,000 tokens * 100 MIN/tokens).

due to the _updateBeneficiaryVestedAmount() function the

released amount is set to zero.

total amount: 2,000,000

released amount: 0

When the vesting schedule ends and Alice releases her funds,

Alice will be able to get all the 2,000,000 MIN tokens + 300,000

she released before.

11

F-2024-2058 - Reserved Funds are not being Updated - High

Description: The _totalReservedAmount variable is being used to track the total

amount reserved for the beneficiaries. This variable is included into

various key calculations such as withdrawable token amount

calculation and global limit checks in during new beneficiary addition,

and global limit checks while creating a new vesting schedule.

However the only way to update this variable is through the following

function, addToTotalReservedAmount():

function addToTotalReservedAmount(uint256 amount) internal {

_totalReservedAmount += amount;

emit TotalReservedAmountUpdated(_totalReservedAmount);

}

As it can be seen, this function is internal, meaning the owner cannot

call it manually, and it is only being called in the strategic vesting

schedules. That means for all the other vesting schedules the

reserved amount will not be applied to the calculations and the

system will allow to more withdrawals, beneficiary, or vesting

schedules than it should.

This will lead to imbalances.

Assets:

./vesting/MINVesting.sol [https://github.com/baltarifcan/MINToken/]

Status: Fixed

Classification

Impact: Likelihood [1-5]: 4

Impact [1-5]: 5

Exploitability [0-2]: 0

Complexity [0-2]: 0

Final Score: 4.5 (High)

Hacken Calculator Version: 0.6

Severity: High

Recommendations

Remediation: Update the reserved amount for every new beneficiary or vesting

schedule addition.

12

https://portal.hacken.io/App/Projects/Details/9a12caf9-3a2e-4fba-8b52-b5a5512bf82b/Finding/07757af9-c479-4c97-8236-ee51e60e0c10

Remediation (revised commit: 7823a9a): The total reserved

amount is being updated via addToTotalReservedAmount() function

in each vesting creation.

Evidences

PoC

Reproduce:
For the following vesting schedules:

strategic: {

tgePermille: 100,

beneficiary: WALLETS.strategic,

startTimestamp: START_DATE,

cliffDuration: 2 * MONTH,

vestingDuration: 18 * MONTH,

slicePeriodSeconds: MONTH,

totalAmount: BigInt(7_500_000) * 10n ** 18n,

releasedAmount: 0,

},

private: {

tgePermille: 0,

beneficiary: WALLETS.private,

startTimestamp: START_DATE,

cliffDuration: 4 * MONTH,

vestingDuration: 12 * MONTH,

slicePeriodSeconds: MONTH,

totalAmount: BigInt(1_500_000) * 10n ** 18n,

releasedAmount: 0,

},

public: {

tgePermille: 100,

beneficiary: WALLETS.public,

startTimestamp: START_DATE,

cliffDuration: 2 * MONTH,

vestingDuration: 18 * MONTH,

slicePeriodSeconds: MONTH,

totalAmount: BigInt(27_000_000) * 10n ** 18n,

releasedAmount: 0,

},

enGaranti: {

tgePermille: 0,

beneficiary: WALLETS.enGaranti,

startTimestamp: START_DATE,

cliffDuration: 3 * MONTH,

vestingDuration: 60 * MONTH,

slicePeriodSeconds: MONTH,

totalAmount: BigInt(30_000_000) * 10n ** 18n,

releasedAmount: 0,

},

operations: {

tgePermille: 0,

beneficiary: WALLETS.operations,

startTimestamp: START_DATE,

cliffDuration: 6 * MONTH,

vestingDuration: 48 * MONTH,

slicePeriodSeconds: MONTH,

totalAmount: BigInt(24_000_000) * 10n ** 18n,

releasedAmount: 0,

},

marketingAndRewards: {

tgePermille: 15,

beneficiary: WALLETS.marketingAndRewards,

startTimestamp: START_DATE,

cliffDuration: 0 * MONTH,

vestingDuration: 59 * MONTH,

slicePeriodSeconds: MONTH,

totalAmount: BigInt(60_000_000) * 10n ** 18n,

releasedAmount: 0,

},

devTeam: {

tgePermille: 0,

13

beneficiary: WALLETS.devTeam,

startTimestamp: START_DATE,

cliffDuration: 3 * MONTH,

vestingDuration: 60 * MONTH,

slicePeriodSeconds: MONTH,

totalAmount: BigInt(30_000_000) * 10n ** 18n,

releasedAmount: 0,

},

reserve: {

tgePermille: 0,

beneficiary: WALLETS.reserve,

startTimestamp: START_DATE,

cliffDuration: 48 * MONTH,

vestingDuration: 12 * MONTH,

slicePeriodSeconds: MONTH,

t

See more

14

https://portal.hacken.io/App/Projects/Details/9a12caf9-3a2e-4fba-8b52-b5a5512bf82b/Finding/07757af9-c479-4c97-8236-ee51e60e0c10

F-2024-2070 - Missing Free Amount Check When Users Are Added

to Private Sale - Medium

Description: The private sale schedule allows its users to deposit or withdraw

funds to their schedule through the deposit() and withdraw()

functions. These functions call the

_updateBeneficiaryVestedAmount() function which creates or

updates the record for the private sale.

function deposit(uint256 amount) public onlyBeforeSaleEnd {

require(

(((_swapToken.balanceOf(address(this)) + amount) * 100) / _ratioMinT

oSwap) <= _maxMinToken,

"MINPrivateSwap: not enough MIN tokens to buy for the swap tokens"

);

....

}

function _updateBeneficiaryVestedAmount(address beneficiary, uint256

swapTokenBalance) private {

MINStructs.VestingSchedule memory vestingSchedule = MINStructs.Vesti

ngSchedule({

tgePermille: 0,

beneficiary: beneficiary,

startTimestamp: _privateSaleVestingSchedule.startTimestamp,

cliffDuration: _privateSaleVestingSchedule.cliffDuration,

vestingDuration: _privateSaleVestingSchedule.vestingDuration,

slicePeriodSeconds: _privateSaleVestingSchedule.slicePeriodSeconds,

totalAmount: 0,

releasedAmount: 0

});

if (swapTokenBalance > 0) {

vestingSchedule.totalAmount = ((swapTokenBalance * 100) / _ratioMinT

oSwap);

}

if (vestingSchedule.totalAmount > 0) {

_setVestingSchedule(vestingSchedule);

} else {

_removeVestingSchedule(beneficiary);

}

}

As it can be seen this function just updates the related mapping and

does not check if the caller is actually a private sale member or not.

This means that any user can deposit funds to the private sale and

turn their schedule into a private sale schedule. This will cause

imbalances in the tokenomics design.

The tokenomics design allows 1.500.000 MIN tokens for the private

sale schedule, However the implementation does not check if there

are enough free amount to create a new vesting schedule with the

given settings. It only checks if the deposited amount does not

exceed the total amount.

In addition to that since the implementation does not check the

deadlines, a finished vesting schedule user, can deposit funds and

become a private sale member then wait for its release and get more

funds.

15

https://portal.hacken.io/App/Projects/Details/9a12caf9-3a2e-4fba-8b52-b5a5512bf82b/Finding/0a7ba142-f878-42ec-a426-b7fdad0827e3

Assets:

./vesting/MINPrivateSwap.sol

[https://github.com/baltarifcan/MINToken/]

Status: Fixed

Classification

Impact: Likelihood [1-5]: 4

Impact [1-5]: 5

Exploitability [0-2]: 1

Complexity [0-2]: 1

Final Score: 3.2 (Medium)

Hacken Calculator Version: 0.6

Severity: Medium

Recommendations

Remediation: Update the available supply check so that it actually checks the

available amount.

Remediation (revised commit: 7823a9a): The available supply

check condition is updated.

16

F-2024-1476 - TGE can be Withdrawn Multiple Times - Low

Description: The computeReleasableAmount() function tries to compute the

amount of tokens that can be released to a beneficiary. While doing

so, it includes TGE (Token Generation Event), where a user can claim

a set permille (per thousand) amount of their total before cliff or

vesting, to the equation.

function computeReleasableAmount(address beneficiary) public view vi

rtual returns (uint256) {

...

uint256 releasable = 0;

uint256 tgeAmount = 0;

//calculate tge, if tge is zero, then no tokens are due

if (vestingSchedule.tgePermille > 0) {

tgeAmount = (vestingSchedule.totalAmount * vestingSchedule.tgePermil

le) / 1000;

releasable += tgeAmount;

}

if (currentTime < vestingSchedule.startTimestamp + vestingSchedule.c

liffDuration) {

return releasable;

}

...

}

As it can be seen, if a TGE is set, if the cliff period has not passed the

calculated TGE amount is returned directly. There are no checks to

control if the TGE is already released or not within that specific time

period.

Tis can lead the TGE to be withdrawn multiple times.

Assets:

./utils/MINVestingBase.sol

[https://github.com/baltarifcan/MINToken/]

Status: Fixed

Classification

Impact: 3/5

Likelihood: 3/5

Exploitability: Semi-Dependent

Complexity: Medium

Severity: Low

Recommendations

Remediation: Subtract the releasedAmount from the calculated TGE.

17

https://portal.hacken.io/App/Projects/Details/9a12caf9-3a2e-4fba-8b52-b5a5512bf82b/Finding/e022d750-6ca8-4a82-9fa9-6135a3cbe3c3

Remediation (revised commit: cb21f01): The already released

amount is being subtracted from the calculated TGE amount:

return releasable - vestingSchedule.releasedAmount;

18

F-2024-2057 - Missing Time Checks During Vesting Period Creation

- Low

Description: The _setVestingSchedule() function allows owner to create vesting

schedules via functions. However, the system does not check if these

new vesting schedules are being created in a past date or their

durations are long enough to align with the tokenomics provided.

function _setVestingSchedule(MINStructs.VestingSchedule memory vesti

ngSchedule) internal {

require(vestingSchedule.beneficiary != address(0), "MINVesting: bene

ficiary address cannot be zero");

require(vestingSchedule.totalAmount > 0, "MINVesting: total amount m

ust be greater than zero");

require(vestingSchedule.slicePeriodSeconds > 0, "MINVesting: slice p

eriod must be greater than zero");

require(

vestingSchedule.vestingDuration > 0 &&

vestingSchedule.slicePeriodSeconds <= vestingSchedule.vestingDuratio

n,

"MINVesting: vesting duration must be greater than zero and slice pe

riod"

);

_vestingSchedules[vestingSchedule.beneficiary] = vestingSchedule;

emit VestingScheduleSet(vestingSchedule.beneficiary, vestingSchedule

);

}

Assets:

./utils/MINVestingBase.sol

[https://github.com/baltarifcan/MINToken/]

Status: Fixed

Classification

Impact: Likelihood [1-5]: 2

Impact [1-5]: 3

Exploitability [0-2]: 0

Complexity [0-2]: 1

Final Score: 2.3 (Low)

Hacken Calculator Version: 0.6

Severity: Low

Recommendations

Remediation: Implement deadline checks.

19

https://portal.hacken.io/App/Projects/Details/9a12caf9-3a2e-4fba-8b52-b5a5512bf82b/Finding/79f1384c-4b38-4b25-932c-ef3434b1d898

Remediation (revised commit: 7823a9a): Deadline check is now

 implemented.

20

F-2024-2067 - Missing Cap Limit Check While Adding Beneficiaries

to the Strategic Sale - Low

Description: The addBeneficiary() function, ads a beneficiary to the strategic

sale. It does not check if the given amount is greater than the MIN

token supply or the pre determined vesting schedule limit.

function addBeneficiary(address beneficiary, uint256 amount) public

onlyOwner {

require(

getVestingSchedule(beneficiary).beneficiary == address(0),

"MINStrategicSale: beneficiary already exists"

);

require(amount > 0, "MINStrategicSale: amount must be greater than 0

");

require(

amount <= getToken().balanceOf(address(this)) - getTotalReservedAmou

nt(),

"MINStrategicSale: amount must be less than or equal to contract bal

ance"

);

MINStructs.VestingSchedule memory vestingSchedule = MINStructs.Vesti

ngSchedule({

tgePermille: _strategicSaleVestingSchedule.tgePermille,

beneficiary: beneficiary,

startTimestamp: _strategicSaleVestingSchedule.startTimestamp,

cliffDuration: _strategicSaleVestingSchedule.cliffDuration,

vestingDuration: _strategicSaleVestingSchedule.vestingDuration,

slicePeriodSeconds: _strategicSaleVestingSchedule.slicePeriodSeconds

,

totalAmount: amount,

releasedAmount: 0

});

_setVestingSchedule(vestingSchedule);

addToTotalReservedAmount(amount);

emit BeneficiaryAdded(beneficiary, amount);

}

Assets:

./vesting/MINStrategicSale.sol

[https://github.com/baltarifcan/MINToken/]

Status: Fixed

Classification

Impact: Likelihood [1-5]: 3

Impact [1-5]: 3

Exploitability [0-2]: 2

Complexity [0-2]: 0

Final Score: 2.1 (Low)

21

https://portal.hacken.io/App/Projects/Details/9a12caf9-3a2e-4fba-8b52-b5a5512bf82b/Finding/885e19f3-7f94-4ad4-826e-3c57c834a5e7

Severity: Low

Recommendations

Remediation: Implement cap limitations.

Remediation (revised commit: 7823a9a): The following check is

implemented so now, the beneficiaries are added if there are enough

free funds.

require(amount <= computeWithdrawableMintokens(), "MINStrategicSale

: amount must be less than or equal to contract balance");

22

F-2024-2068 - Allows Adding a new Beneficiary to a Finished

Vesting Schedule - Low

Description: The addBeneficiary() function, ads a beneficiary to the strategic

sale. However, it never checks if the vesting period has ended or not.

This allows users to add beneficiaries to expired vesting schedules.

function addBeneficiary(address beneficiary, uint256 amount) public

onlyOwner {

require(

getVestingSchedule(beneficiary).beneficiary == address(0),

"MINStrategicSale: beneficiary already exists"

);

require(amount > 0, "MINStrategicSale: amount must be greater than 0

");

require(

amount <= getToken().balanceOf(address(this)) - getTotalReservedAmou

nt(),

"MINStrategicSale: amount must be less than or equal to contract bal

ance"

);

MINStructs.VestingSchedule memory vestingSchedule = MINStructs.Vesti

ngSchedule({

tgePermille: _strategicSaleVestingSchedule.tgePermille,

beneficiary: beneficiary,

startTimestamp: _strategicSaleVestingSchedule.startTimestamp,

cliffDuration: _strategicSaleVestingSchedule.cliffDuration,

vestingDuration: _strategicSaleVestingSchedule.vestingDuration,

slicePeriodSeconds: _strategicSaleVestingSchedule.slicePeriodSeconds

,

totalAmount: amount,

releasedAmount: 0

});

_setVestingSchedule(vestingSchedule);

addToTotalReservedAmount(amount);

emit BeneficiaryAdded(beneficiary, amount);

}

Assets:

./vesting/MINStrategicSale.sol

[https://github.com/baltarifcan/MINToken/]

Status: Mitigated

Classification

Impact: Likelihood [1-5]: 3

Impact [1-5]: 3

Exploitability [0-2]: 2

Complexity [0-2]: 0

Final Score: 2.1 (Low)

23

https://portal.hacken.io/App/Projects/Details/9a12caf9-3a2e-4fba-8b52-b5a5512bf82b/Finding/8e19d7bf-3e96-4630-9f67-fc14316d485f

Severity: Low

Recommendations

Remediation: Implement deadline checks.

Remediation (Mitigated): This is an intended behaviour according

to the client's business logic.

24

Observation Details

F-2024-2053 - Missing Zero Address Violation - Info

Description: In Solidity, the Ethereum address

0x00 is known as the

“zero address”. This address has significance because it is the

default value for uninitialized address variables and is often used to

represent an invalid or non-existent address.

The "Missing zero address control" issue arises when a Solidity

smart contract does not properly check or prevent interactions with

the zero address, leading to unintended behavior.

For instance, consider a contract that includes a function to change

its owner. This function is crucial, as it determines who has

administrative access. However, if this function lacks proper

validation checks, it might inadvertently permit the setting of the

owner to the zero address. Consequently, the administrative

functions will become unusable.

Assets:

./vesting/MINStrategicSale.sol

[https://github.com/baltarifcan/MINToken/]

./vesting/MINPrivateSwap.sol

[https://github.com/baltarifcan/MINToken/]

./utils/MINVestingBase.sol

[https://github.com/baltarifcan/MINToken/]

Status: Fixed

Recommendations

Remediation: Implement zero address validation for the given parameters. This can

be achieved by adding require statements that ensure address

parameters are not the zero address.

Remediation (revised commit: 7823a9a): Zero address checks

have been implemented.

25

https://portal.hacken.io/App/Projects/Details/9a12caf9-3a2e-4fba-8b52-b5a5512bf82b/Finding/7ec0d0d4-36a5-468a-8117-1ba32e8071a3

F-2024-2054 - Redundant Function - Info

Description: The getCurrentTime() function is redundant, as they only return the

global variables block.timestamp.

Assets:

./utils/MINVestingBase.sol

[https://github.com/baltarifcan/MINToken/]

Status: Fixed

Recommendations

Remediation: Remove the redundant function.

Remediation (revised commit: 7823a9a): The redundant function

is removed

26

https://portal.hacken.io/App/Projects/Details/9a12caf9-3a2e-4fba-8b52-b5a5512bf82b/Finding/948fa12c-b4f4-46a8-97a3-d65b731c2d16

F-2024-2055 - Memory Exhaustion Risk Due to Deletion Logic -

Info

Description: The _removeVestingSchedule() function aims to remove the vesting

schedule for a beneficiary. To do that it benefits from the delete

keyword. This keyword does not actually deletes the records in a

struct, it sets them to their default value. Since the record in

examination is a struct all of its values will be set to default but the

record will stay there. This can cause unnecessary memory load on

the system.

function _removeVestingSchedule(address beneficiary) internal {

delete _vestingSchedules[beneficiary];

}

Assets:

./utils/MINVestingBase.sol

[https://github.com/baltarifcan/MINToken/]

Status: Accepted

Recommendations

Remediation: Adopt tombstone pattern or prefer sparse mapping libraries such

asOpenZeppelin Upgrades.

Remediation (Accepted): The client accepted the risks as this is an

observation and does not directly affect the security score.

27

https://portal.hacken.io/App/Projects/Details/9a12caf9-3a2e-4fba-8b52-b5a5512bf82b/Finding/9ace9f45-6c6c-40e4-bc75-bd4e73dd1c7e

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at

the time of the writing of this report, with cybersecurity vulnerabilities and issues in smart

contract source code, the details of which are disclosed in this report (Source Code); the Source

Code compilation, deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and

security of the code. The report covers the code submitted and reviewed, so it may not be

relevant after any modifications. Do not consider this report as a final and sufficient

assessment regarding the utility and safety of the code, bug-free status, or any other contract

statements.

While we have done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only — we recommend proceeding

with several independent audits and a public bug bounty program to ensure the security of

smart contracts.

English is the original language of the report. The Consultant is not responsible for the

correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have

vulnerabilities that can lead to hacks. Thus, the Consultant cannot guarantee the explicit

security of the audited smart contracts.

28

Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers

Likelihood, Impact, Exploitability and Complexity metrics to evaluate findings and score

severities.

Reference on how risk scoring is done is available through the repository in our Github

organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss

of user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or

have a more limited scope, but can still lead to the loss of user funds or contract

state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most

cases, cannot lead to asset loss. Contradictions and requirements violations. Major

deviations from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will not

have a significant impact on code execution, do not affect security score but can

affect code quality score.

29

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository

https://github.com/baltarifcan/MINToken/?tab=readme-ov-

file

Commit 0ec894f

Whitepaper n/a

Requirements

https://github.com/baltarifcan/MINToken/?tab=readme-ov-

file

Technical

Requirements

https://github.com/baltarifcan/MINToken/?tab=readme-ov-

file

Contracts in Scope

contracts/token/MINToken.sol

contracts/vesting/MINVesting.sol

contracts/vesting/MINStrategicSale.sol

contracts/vesting/MINPrivateSwap.sol

contracts/utils/MINVestingBase.sol

contracts/utils/MINStructs.sol

30

https://github.com/baltarifcan/MINToken/?tab=readme-ov-file
https://github.com/baltarifcan/MINToken/?tab=readme-ov-file
https://github.com/baltarifcan/MINToken/?tab=readme-ov-file

